This is where I am testing features which I will be adding to the site. Currently code, math, tables, desmos (+3d), rudimentary citations, and some subset of markdown (goldmark?) is supported.
Test1 Test1 Test1 Test1
Test2 Test2 Test2 Test2
Test3 Test3 Test3 Test3
| Column A | Column B | Column C |
|---|---|---|
| Item 1 | Value A | Notes 1 |
| Item 1 | Value A | Notes 1 |
| Item 2 | Value B | Notes 2 |
| Item 2 | Value B | Notes 2 |
This is the Desmos 2D calculator.
It’s incredibly easy to use!
This is the Desmos 3D calculator with a pre-loaded equation and locked zoom.
Pretty cool, right?
Test4 Test4 Test4 Test4
Test5 Test5 Test5 Test5
Test6 Test6 Test6 Test6
Testp Testp Testp Testp
You can learn more by reading [1, 2] .
This is some good ol’ inlined code..! You should look at /docs/CODE.md!
"""
This is a multi-line docstring for a module.
It serves as a general description of the module's purpose.
"""
import os
import sys
from collections import defaultdict, namedtuple
from functools import wraps
from dataclasses import dataclass
type MyString = str
# Define a constant
MAX_RETRIES = 5
# A simple function definition
@wraps
def greet(name: str) -> str:
"""
Greets a person by name.
Args:
name: The name of the person to greet.
Returns:
A greeting string.
"""
if name is None or not isinstance(name, str):
raise ValueError("Name must be a non-empty string.")
message = f"Hello, {name}!"
print(message) # A print statement
return message
@dataclass
class DummyClass:
...
class MyClass[Generic : int](int, MyString):
"""A sample class to test class-related theme elements."""
class_variable = "I am a class variable"
def __init__(self, value: int):
local_variable = 0
self.instance_variable = value # An instance variable
self._private_variable = "private" # A "private" variable
self.__mangled_variable = "mangled" # A name-mangled variable
local_variable -= 1
@property
def read_only_property(self) -> int:
"""A read-only property."""
return self.instance_variable * 2
def sample_method(self, arg1: str, arg2: list) -> None:
"""A sample method with various syntax elements. $x\in X$?"""
local_variable = 10 # A local variable
for item in arg2:
if item == arg1:
print(f"Found {item} matching {arg1}")
break
else:
print(f"Item {item} does not match {arg1}")
# A dictionary and list
data = {
"key1": "value1",
"key2": 123,
"key3": [1, 2, 3]
}
my_list = ["apple", "banana", "cherry"]
# Exception handling
try:
result = local_variable / 0
except ZeroDivisionError as e:
print(f"Error: {e}")
finally:
print("Execution finished.")
# Lambda function
square = lambda x: x * x
print(f"Square of 5: {square(5)}")
# Function calls and variable assignments
user_name = "Alice"
greeting_message = greet(user_name)
# Class instantiation and method calls
my_object = MyClass(42)
print(my_object.read_only_property)
my_object.sample_method("banana", ["apple", "orange", "banana"])
# Comments
# This is a single-line comment.
# TODO: Add more complex data structures.
# FIXME: This logic needs refactoring.
# Type hints and annotations
def process_data(data: dict[str, list[int]]) -> None:
pass
# Async/await
async def fetch_data(url: str):
# Simulate an asynchronous operation
await asyncio.sleep(1)
return {"data": "some_data"}
import asyncio
if __name__ == "__main__":
print("Running main execution block.")
asyncio.run(fetch_data("http://example.com"))
This is the inlined Q-function recurrence relation: $Q^\pi(s,a) = r(s,a) + \gamma\underset{s'\sim P(s'|s,a)}{\mathbb{E}}[Q^\pi(s',\pi(s'))]$. Wow that’s so nice!
$$Q^\pi(s,a) = r(s,a) + \gamma\underset{s'\sim P(s'|s,a)}{\mathbb{E}}[Q^\pi(s',\pi(s'))]$$- Bullet List
- Sub item
- Sub sub item
- Sub item
- Ordered List 1
- Hello
- Hello
- Hello