
Learned Traversability Priors for Visual Navigation

Will Huey
Cornell University

Ithaca, NY
wph52@cornell.edu

Sean Brynjólfsson
Cornell University

Ithaca, NY
smb459@cornell.edu

1. Introduction

A key problem in mobile robotics is navigation in new
or dynamic environments. Recently, there has been extra
focus on visual navigation, where the robot must navigate
using only image observations. Images are rich enough
to characterize a large number of potential traversals, and
there are some visual semantic cues about traversability that
geometric information does not provide. Tall grass may
be traversable, but would be captured as an obstacle by
point cloud based methods. Wet concrete may only be dis-
tinguishable from regular concrete by construction tape or
cones in the vicinity, which is a semantic clue that requires
vision to understand.

A navigation model must have a high level understand-
ing of the environment to perform search, as well as the ca-
pability to avoid collisions. These are two fundamentally
different problems, but they are rarely treated as such in
visual navigation literature. We hypothesize that provid-
ing a traversability prior to visual navigation models can
improve performance on out of distribution scenarios, es-
pecially when there is limited training data. In this pa-
per, we demonstrate that weak traversability priors can be
obtained from large open vocabulary image segmentation
models. We then apply model distillation techniques to train
a smaller traversability prediction network capable of real
time inference, and demonstrate a heuristic that uses this
network to perform obstacle avoidance. Finally, we investi-
gate the use of these models for navigation in a behavioral
cloning setting.

2. Related Work

Navigation methods are broadly centered around two
categories: geometric and visual. Geometric approaches
construct a geometric representation of the world from
depth cameras, lidar, and robot odometry. For ground
robots, this is often an elevation map [13], both for ease
of implementation and in order to reduce roll-out compu-
tation costs. Once a geometric representation of the world
has been produced, a heuristic [4] or learned-function [22]

is then used to evaluate the traversability at each location
on the map. Then, when provided a goal location, a path-
finding algorithm like A* is used to find the path that min-
imizes the traversability cost. Some recent approaches also
target a more end-to-end pipeline in which the planning it-
self is learned and can function with as little as one depth
measurement [24].

Recently, visual navigation has become more popular.
Lidar units are relatively large, expensive, and power hun-
gry compared to cameras; different lidar scanners pro-
duce scans which have significantly distinct statistics which
make methods hard to generalize; and real point cloud data
is much more sparse and inconsistent in quality and size.
Additionally, the advances in image semantic analysis can
be incorporated into navigation pipelines. Images can cap-
ture semantic information about an environment that is not
captured by depth.

The visual navigation task can be formulated as the fol-
lowing Markov Decision Process (MDP): given a set of re-
cent images and robot state information, predict the next ac-
tion for the robot to perform. The reward is task dependent,
but it is a general measure of navigational performance.
It may be defined by reaching some goal location, learn-
ing more information about the environment, or following
a command. Many recent visual navigation methods have
used elements of imitation learning to solve this MDP, tak-
ing advantage of the growing amount of publicly available
robot rollout data.

Schmid, et al. and Frey, et al. used self-supervised learn-
ing to predict a mask of traversable areas on an image given
a small number of initial expert demonstrations in a new en-
vironment [5] [17]. However, this method still requires pro-
jection of the traversability masks onto an elevation map.
Dhruv, et al. applied offline imitation learning techniques
on existing datasets of rollouts on varied robots and envi-
ronments to create a generalized, end-to-end visual navi-
gation model [19]. Within the aforementioned framework,
ViNT [20] integrated a topological-graph based planner to
enable global planning and exploration.

These methods show promise as robot-agnostic founda-
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tion models for navigation. However, they are trained in a
behavioral cloning-like setting, making them susceptible to
covariate shift.

Another approach to learn traversability involves Vision-
Language Models (VLMs). Vision-Language Models are
an emerging class of multimodal architectures designed to
operate over images and text. Since some abstract concepts
are easier to verbalize than picture, VLMs provide an in-
herent benefit on image semantic analysis. Many recent
models have been utilizing Contrastive Label-Image Pairs
(CLIP) embeddings in order to make the bridge between
text and images; CLIP is a shared latent space between im-
age and text [15]. OVSeg (Open-Vocabulary Segmentation)
is an segmentation model fine-tuned on the CLIP embed-
ding space [12]. OVSeg provides for segmentation of arbi-
trary text input in a zero-shot setting.

In previous work, we used OVSeg as alternative method
of generating a traversability signal, finding that it is possi-
ble to not only detect the abstract concept of ’traversability’
in images, but also isolate which pixels in the image were
labeled traversable.

3. Traversability Distillation
Traversability depends on a robot’s capabilities, so any

traversability prior will necessarily lack some knowledge
that would be required for a general navigation model. Nev-
ertheless, there are commonly traversable and untraversable
terrains. For the vast majority of mobile robots, walls and
obstacles cannot be traversed, but smooth ground is gen-
erally traversable. During previous experimentation, we
found that OVSeg, an off-the-shelf open vocabulary im-
age segmentation model [12] is able to effectively label re-
gions in an image according to abstract descriptions like ”a
traversable region” or ”something a robot could walk on.”
This provides a zero-shot estimation for traversability in
any environment. We propose using these predictions as
a traversability prior. This avoids the problem of hand la-
beling many images, instead leveraging the knowledge and
reasoning capabilities of a large transformer-based model.

Our approach is a simple and practical method targeted
towards existing visual navigation architectures. Thus, it
needs to be both light and fast enough to run in real time
on limited compute. Using OVSeg for a constant set of la-
bels leaves much to be desired because all of the overhead
for open vocabulary is wasted on constant labels. Upon ini-
tial tests, OVSeg and other existing open vocabulary image
segmentation methods are not fast enough; even OVSeg’s
smallest model has an inference time exceeding 5 seconds
when running on a Jetson processor. This is unacceptable
for real-time edge applications. Thus, we first aim to boil
off all the unnecessary fat by distilling OVSeg over a con-
stant prompt. To achieve better performance, we adopt a
teacher-student model for distillation on traversable and un-

traversable predictions.
Hinton, et al. proposed Knowledge Distillation, in which

the temperature adjusted KL divergence between the soft-
max probabilities of a teacher and a student model is min-
imized [8]. It was shown that, for student models that are
not large enough to capture all the knowledge in the teacher
model, it is best to use an intermediate temperature value
(a temperature of between 2.5 and 20 worked best for net-
works of varying sizes on MNIST).

In practice, we choose to use the binary cross entropy
loss instead of the KL divergence for knowledge distillation.
Assuming that the entropy of the training set is constant, the
minimizations of these expressions converge. The reason-
ing for using the cross entropy loss is as follows: let Dh be
the cross entropy loss, DKL be the KL (Kullback–Leibler)
divergence, p(x) be the target distribution, and q(x) be the
model distribution.

Dh = −
∑
x∈X

p(x) log q(x)

DKL =
∑
x∈X

p(x) log
p(x)

q(x)
= Dh +

∑
x

p(x) log p(x)

Dh = DKL + Sp

Sp is the entropy of the target distribution X. If this is
constant, then there is no difference in the minimization
of these expressions. However, we train with minibatches
of size of 8, so Sp is almost certainly not constant across
batches. Thus, the cross entropy loss is more robust in this
situation.

Here, OVSeg is used as the teacher model and distilled
to two different types of student models using a tempera-
ture of 4. Even though OVSeg is a generalist model, it has
been evaluated to perform on-par with task-specific models
like FCN, Deeplab, and SelfTrain [12]. This suggests that
OVSeg is among the best source models available for distil-
lation because it may match the performance of a dedicated
model specifically for our target, traversability.

Two student models were investigated. The first is a pre-
trained FasterViT backbone [7] with a feature pyramid net-
work as described in He, et al. [11] to obtain image segmen-
tations. We use the smallest pretrained FasterViT model
(31.4M params, pretrained on Imagenet 1k). FasterViT
was chosen because it has achieved the current Pareto-front
with respect to throughput vs. accuracy on a wide range of
benchmarks. Although not explicitly designed for seman-
tic segmentation tasks, it beats similar models on ADE20K.
Additionally, because it consists of two convolutional lay-
ers followed by two transformer layers, visual prompt tun-
ing can be used to accelerate training speeds [10]. The only
learnable parameters are visual prompts inserted between
each transformer layer (accounting for less than 1% of to-
tal model parameters), the FPN transformations, and a final



Figure 1. Examples of two images in the test set and their traversability segmentations by OVSeg and the two student models trained on the
RECON, KITTI, and UTIAS datasets. The top row shows an image on which OVSeg performs very well, and the other models are able to
reasonably replicate its predictions. The bottom row shows an image that OVSeg fails on. Interestingly, the FasterViT student model fails
in the manner, but almost predicts the exact opposite signal. Meanwhile, Fast-SCNN is able to create a reasonable prediction, assuming
the robot can walk through tall grass.

fully connected layer. This allowed us to quickly fine tune a
relatively large student model, training only 867K parame-
ters. The second student model is a fully fine tuned Fast-
SCNN model pretrained on the Cityscapes dataset. [14].
Since the Cityscapes dataset contains many of the features
that correspond to traversability (having separate segments
for roads, sidewalks, obstacles, etc.), we hypothesized that
this model’s parameters would already encode some repre-
sentation of traversability, allowing it to converge faster and
generalize better. FastSCNN only has 1.5M parameters, but
all of these needed to be tuned.

Following [19], we combine a variety published datasets
containing egocentric images taken by different robots in
varying terrain. Samples were selected from these datasets
to increase the diversity of the images in the training set. For
example, images in KITTI are captured at 10hz, which re-
sults in a large number of extremely similar images. Since
the traversability model does not depend on sequences of
images or commands, many of these examples could be re-
moved. To test the models, we reserved a test set of 436 im-
ages taken by an Anymal D robot navigating a construction
site and an office space. The camera intrinsics, robot size,
orientation of the camera with respect to the robot, image
resolution, and environment of the test set is significantly
different from the training set. This is important because
the goal of the traversability prediction network is to gen-
eralize to different sensors and robots. Further information
about the specific datasets and the number of images se-

lected from them is given in Table 1.

The teacher is given the prompts ”something a robot
could walk on” and ”other,” and the student is trained on the
resulting segmentation masks. We apply a set of templates
to these prompts (such as: ”an image of” or ”a dark photo
of”) and average the results, as performed by the authors of
OVSeg. Initially, other similar prompts were also evaluated,
such as ”traversable terrain” and ”obstacles.” Since there is
no existing dataset of images with pixel-level traversability
labels, the prompts cannot be empirically evaluated or nu-
merically optimized. In fact, creating such a dataset would
be impossible, because traversability is dependent on the
robot and somewhat subjective. Thus, the prompts ”some-
thing a robot could walk on” and ”other” were based on
qualitative observations of the outputs of OVSeg. Specif-
ically, we looked for performance on challenging features
(such as stairs or ramps), frequency of catastrophic fail-
ures (where the entire mask would be traversable or un-
traversable), and the granularity of the masks.

The models were trained for 25 epochs with a learn-
ing rate of 6e-4, which took between 1-4 hours depend-
ing on the model. These parameters were found using grid
search. In all cases, images were interpolated to a standard
size. The SaCSON dataset contains 120x160 images, which
needed to be upsampled for use with the pretrained Faster-
ViT model. For each model type, we tested training with
all of the training datasets, and with all except for SaCSON.
The performance of the four different architecture and train-



Dataset Platform Samples Env.

SACSoN [9] TurtleBot2 12512 office
RECON [18] Jackal 3912 off-road
KITTI [6] Car 3301 self-driving
UTIAS [3] Grizzly 22 off-road
RSL Lab Anymal D 275 busy office
Schulstrasse 44 Anymal D 161 construction

Total 20183

Table 1. The datasets used for traversability knowledge distillation
from OVSeg. These cover a wide range of environments that may
be encountered by mobile robots, including offices, trails, side-
walks, construction sites, and roads.

ing set combinations is shown in Table 2. We report the
mean intersection-over-union (mIOU) of the distilled net-
work with the teacher network for our robot-acquired im-
ages. Although SaCSON contributed many additional train-
ing points (including points within an office space, which
was similar to one of the test sets), performance was better
for both model architectures without it. Our experiments
were on photos of size 224x224, so we did not need to worry
about extremely low resolution images. For robots with low
resolution cameras, it is possible that the models trained on
the full data would be better.

Figure 1 shows examples of two different images in the
test set. Despite the high resolution training sets contain-
ing no indoor images, these models performed remarkably
well on the test set. The student models were able to predict
that walls are untraversable, having only seen images taken
by vehicles in various outdoor terrain. However, their seg-
mentations are missing many of the fine grained features of
OVSeg (such as the column on the left). This is most likely
due to issues with the model resolution. Increasing model
resolution without a significant penalty to runtime would
help boost performance.

The bottom row shows an image that OVSeg fails on.
There are shadows, the scene is heavily occluded by grass,
and it suffers from glare. It predicts that the entire image is
untraversable, which is a behavior that occasionally occurs
for difficult or ambiguous images. This demonstrates the
importance of the open vocabulary method that is chosen
as the teacher method. For our purposes, failures like this
can happen occasionally, as long as the model is correct on
average.

We also report of the latency of the models running
on an Nvidia A6000 GPU with a batch size of 1. For
robotics applications, images often need to be processed
in sequence, so the single image latency is more important
than model throughput with large batches. Before distilla-
tion, the model could not be run in real time on a work-
station, let alone on a robot with limited compute. Using

Fast-SCNN, we achieved a speedup of over 400x.

Model Dataset mIoU Latency (ms) Speedup

OVSeg - 0.99 1651.9 1x
FasterViT full 0.75 18.21 91x
FasterViT partial 0.80 17.68 93x
Fast-SCNN full 0.79 4.11 402x
Fast-SCNN partial 0.72 4.03 409x

Table 2. Model performance metrics. Models with the full la-
bel were trained on SaCSON, RECON, KITTI, and UTIAS im-
ages. Models with the partial label were trained only on RECON,
KITTI, and UTIAS.

4. Heuristic Guided Navigation
We evaluated our models in Nvidia Isaac Sim, a robotics

simulator built on top of Nvidia’s Omniverse. Isaac Sim
supports photorealistic rendering and provides an API to
simulate a variety of mobile robots. For these experi-
ments, we use an ANYbotics ANYmal C. We obtained
high-quality photogrammetry meshes from SketchFab. Our
simulated experiments make heavy use of the Lincolns Inn
Chapel Undercroft and Lake Shore Drone Scan [1, 2]. No
modifications other than converting the scan into the .usd
file format and applying a physics material took place.
However, it must be noted that the conversion process did
degrade the mesh and textures. This was acceptable to us
because the input to our model is an image at a resolution
of 224x224, so losing out on some of the high frequency
details should be relatively insignificant.

The distilled traversability network is fast enough to run
in real time, and its predictions match the teacher with good
accuracy. However, since the teacher model’s outputs are
based on natural language prompts, and there are no ground
truth traversability masks, it is impossible to tell whether
these predictions are good enough to provide a meaning-
ful prior to a navigation model. As a proof of concept, we
implemented four simple heuristics that allow the robot to
explore and avoid obstacles autonomously using only the
current traversability prediction as input.

1. Eight-Column. The eight column approach breaks the
image into eight 224x28 pieces. Let P0...P7 be the in-
dividual pieces and let Pmax be the most traversable
piece. In the column approach, the robot tended to
get too close to the columns because it would continue
straight forward even if a large portion of one of its
sides was untraversable.

action =

 left, Pmax ∈ P0, P1, P2

straight, Pmax ∈ P3, P4

right, Pmax ∈ P5, P6, P7



Figure 2. The four primary heuristics we tested out on our traversability signals rolled out ten times each on the Lincoln Inn Chapel
Undercroft environment. Leftmost: Columns. Center left: Octants. Center right: Bottom-Heavy Octant. Rightmost: Bottom-Heavy
Pairwise Octant. See Section 6 for more information on the right turning bias present in these rollouts.

2. Octant. The octant approach breaks the image into
eight 112x56 pieces, so two rows and four columns.
P0, P1, P2, P3 are in the top row from left to right,
P4, P5, P6, P7 are in the bottom row also from left
to right. With the octant approach we intended to
force the robot to pick a direction instead of being
able to continue straight-ahead. Column avoidance
did improve, but since the bottom half of the camera
image represents points quite close to the robot, the
robot would not preemptively try to navigate around
columns.

action =

 left, Pmax ∈ P0, P4, P5

straight, Pmax ∈ P1, P2

right, Pmax ∈ P3, P6, P7

3. Bottom-Heavy Octant. The bottom heavy octant ap-
proach breaks the image into four 56x56 pieces along
the top row and four 186x56 pieces along the bottom
row; still two rows and four columns like in the Octant
case with pieces labeled the same. See Figure 3. By
including the bottom three-quarters of the image, we
expected the robot to display more avoidant responses
to columns in the distance. We observed this behav-
ior but along with it came ”farsightedness”, where the
robot seemed to disregard its local traversability to pur-
sue a high traversability signal far away, often taking
sharp turns and narrowly passing columns to do so.

action =

 left, Pmax ∈ P0, P4, P5

straight, Pmax ∈ P1, P2

right, Pmax ∈ P3, P6, P7

4. Bottom-Heavy Pairwise Octant. This begins by
breaking apart the image in the same way as the
Bottom-Heavy Octant, but now we group the pieces
into pairs of neighbors along the columns. By intro-
ducing pairs, we reintroduced a straight command to
the bottom row of pixels, hoping that it might allow the
robot to take a more consistent trajectory. This once
again seemed to suffer the same apathy towards obsta-
cles in the periphery as the Eight-Column approach,
however.

action =

 left, (Pi, Pj)max,∈ (P0, P1), (P4, P5)
straight, (Pi, Pj)max ∈ (P1, P2), (P5, P6)
right, (Pi, Pj)max ∈ (P2, P3), (P6, P7)

Figure 3. A demonstration of the robot’s perception overlaid with
both the traversability mask (in red) and the most-traversable oc-
tant (in green). In this case, the robot predicts to turn left using the
Bottom-Heavy Octant heuristic.

With these simple heuristics, we demonstrate that our
traversability signal provides meaningful and actionable
information for autonomous navigation of environments
which the robot has never seen before, see Fig. 2. Even



further, our method does not need to construct a 3D repre-
sentation of the world with which to perform point queries
or other such algorithms to determine where it can go, keep-
ing it both light-weight and decoupled from any particular
representation of the world.

The primary downside to our approach is that we do not
implement a backtracking behavior (in fact, there is no in-
put to any of the heuristics which tells the robot to back up).
This presents challenges in narrow passageways since the
heuristic will gladly guide the robot into dead ends. This is
intentional: the robot should not be expected to do any bet-
ter without a more comprehensive approach. Backtracking
and avoiding dead-ends requires a stateful working knowl-
edge of the environment which cannot be deduced from a
single image alone. We regard this problem as distinct from
traversability estimation because it involves context beyond
the image.

Another downside to this heuristic out-of-box is that
there is no clear way to decide between two good avenues—
sometimes when faced with a fork in the road, the robot
vacillates between traversable options and is unable to make
progress in any direction. Failing in this manner though is
itself promising because it warrants consideration of ways
to fuse this approach with another that can instill a global
objective. If there are two or more options detected as
traversable, then the traversability estimator has done its
job.

Since a major advantage to vision-based traversability is
its ability to respond to semantic information that may con-
found geometric models, we conducted some qualitative as-
sessments of our traversability estimator on features on wa-
ter. Specifically, we chose a calm lake which cannot be dis-
tinguished from a smooth surface by geometry alone (see
Fig. 4. In short, our traversability estimator is weary of wa-
ter but will suggest it over a blatant obstacle. We tested the
Bottom-Heavy Octants heuristic out on various locations of
the Lake Shore Environment. We note that there seems to
be a peninsula effect whereby traversability is higher for an
outcrop of land surrounded by water or land with a physical
barrier on one side and water on the other. This causes the
robot under our heuristic to enter a dead-end scenario. How-
ever, once the robot gets sufficiently close to the water, the
traversability score of the water tends to increase, suggest-
ing that our traversability estimator may not unequivocally
treat water as untraversable.

5. Traversability Priors for Existing Models
The heuristic approach is a useful proof of concept, but

it does not help boost the capabilities of existing learning-
based techniques for navigation. Since many visual naviga-
tion models currently use training in the style of imitation
learning, we specifically chose to investigate the effect of
adding a traversability prior on the performance of behav-

Figure 4. An aerial view of the Lake Shore Drone Scan [2] show-
ing several autonomous roams along the coastline.

Figure 5. Three traversability segmentations and heuristic selec-
tions with water in the vicinity. The two on the right exhibit the
peninsula effect.

ioral cloning models (a specific type of imitation learning).
First, we would like to provide a mathematical intu-

ition for why a traversability prior may help improve per-
formance. Let Jπ be the cost-to-go of the current policy,
VπE

be the cost-to-go of the optimal policy (expert), T be
the task horizon, and l(s, π) be the surrogate loss function
that is optimized in place of the value function (since the
value function is not fully known). Ross & Bagnell showed
that behavioral cloning results in quadratic compounding of
error with the task horizon [16]:

Jπ ≤ JπE
+ T 2Es dπE

[l(s, π)]

Substituting the value function V for the negative cost-
to-go, it follows that:

|Vπ − VπE
| ≤ T 2Es dπE

[l(s, π)]

To mitigate this problem, Ross & Bagnell proposed
DAgger, a no-regret online learning algorithm that results



Figure 6. The proposed method for fine tuning an existing image
navigation model on traversability data. Traversability masks are
produced by the distilled open vocabulary segmentation network.
The MLP head will depend on the downstream task (for example,
it may predict explicit actions or normalized waypoints).

in only linear error compounding of error. DAgger requires
expert intervention during training rollouts, which is not
feasible for navigation models that aim to generalize to any
robot and environment.

The other way to avoid the effects of covariate shift is to
gather training data that covers a larger subset of the pos-
sible states. Let Rmax be the maximum possible reward, γ
be a discount factor, and DTV (ρπ, ρπE

) be the state-action
distribution discrepancy between the learner and the expert.
Xu, et al. derived the following error bound for the value
gap in behavioral cloning [23]:

|Vπ − VπE
| ≤ 2Rmax

1− γ
DTV (ρπ, ρπE

).

Thus, if the state-action distribution discrepancy is min-
imized, this can result in a tighter bound on the value gap
and a better model. One way to decrease this discrepancy
is to provide the learner with actions in a wider subset of
the possible states. Our key assumption is that, by adding
a traversability prior, the space of possible states is con-
strained, thus decreasing the state-action discrepancy. For
example, obstacles that would previously correspond to en-
tirely different states (such as an image of a large column vs.
an image of a human) simply become untraversable terrain
given the prior.

To explicitly provide traversability information to these
models, we apply a cross attention mechanism [21] on
the feature maps of the RGB image and the tokenized
traversability mask as depicted in Figure 6. The RGB
feature maps are represented as the decoder signal to the
attention mask (providing queries), and the traversability
masks as the encoder signal (providing keys and values).
This allows the feature map to attend to each patch in the
traversability mask, so it can learn which parts of the mask

Figure 7. An example of an expert run in the environment of the
Lincoln Inn Chapel Undercroft (simulated in Omniverse’s Isaac
Sim); six poses equally spaced were selected from one of the ex-
pert runs.

Figure 8. Comparison of the behavior cloning ablations. Left:
Image only. Center: Traversability only. Right: Fusion.

are relevant. Additionally, a residual connection is added
from the RGB feature maps to the cross attention output.

To test out behavior cloning with the traversability mask,
we picked the Lincoln Inn Chapel Undercroft [1] since its
rows of columns were consistent and there were otherwise
few sporadic features to interfere with the robot. We des-
ignated a spawn location and then rolled out 5 different
expert-guided rollouts of 150 image-action pairs. The ac-
tion space consisted of a rotation command, and it was as-
sumed that the robot would always walk forward with con-
stant velocity. In the expert runs, the robot began facing NW
at the central pillar, turned right to avoid it, then left until it
was walking towards the central pillar on the western wall.
In test runs, the robot was placed in a different location and
faced a different pillar, in order to test generalization abil-
ity. We attempted two ablations: one only using images,
and one only using the traversability signal. The results af-
ter training are shown in Fig. 8. The image only model
and fusion model produced similar results. They were able



to copy the expert in veering right around the column, but
failed to subsequently turn left. In general, these models do
not appear to replicate the expert actions in any meaningful
way. This is probably due to the severely limited size of the
behavioral cloning training set, as compared with the size
of the model.

6. Future Work

One limitation of the proposed cross attention mecha-
nism is its quadratic runtime complexity. In these exper-
iments, images were represented as sequences of at most
49 patches, which was small enough to avoid a significant
effect on the runtime of the model. However, for higher res-
olution images and priors, it may become important to use
an approximation of the full attention matrix.

We originally intended to use a real wheeled robot for
our experiments, but we ran into various hardware depen-
dencies and software version issues that made it impossible
to run our model on the robot. The Isaac Sim environments
we used are based on real point clouds, and the 224x224
images are highly photorealistic. Since the traversability
prediction networks were trained using real images, sim-to-
real transfer for the model will not be a problem. How-
ever, in order to more rigorously investigate the effect of
traversability predictions on network performance, it is im-
portant to obtain real life results. In fact, due to limitations
of the Anymal locomotion policy in simulation, we expe-
rienced a right-turn bias across all of our rollouts—even in
symmetrical environments. This is not a result of a training
bias because we flipped all inputs randomly along the ver-
tical axis after segmentation was performed by the teacher
model. This rightwards skew actually results from a bias
in the simulated locomotion policy. In simulation, our robot
has a leftwards tilt, meaning that the ground on the right side
of the image is usually higher than on the left, this causes
the right-half of the image to appear more traversable on av-
erage. In real life, with a more robust locomotion controller
and data that is more similar to the training distribution, the
results may actually be better.

Finally, it would be interesting to see how existing
visual navigation models (such as GNM and Wild Visual
Navigation) perform when provided with traversability
signals. The behavioral cloning presented here did not
demonstrate any compelling results, but it used extremely
limited data on a small and unrealistic task. Given that a
simple heuristic on top of the traversability prior is able to
achieve consistent obstacle avoidance, coupling it with a
model that can also take into account global information
should result in good navigation performance.
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