
Construction-Site Digital Twins via Gaussian Splatting
Sean Brynjólfsson

smb459@cornell.edu
Cornell University

Dyllan Hofflich
drh253@cornell.edu
Cornell University

Natalie Leung
nl455@cornell.edu
Cornell University

Danish Qureshi
daq8@cornell.edu
Cornell University

Yiwen Zhang
yz864@cornell.edu
Cornell University

1. ABSTRACT
In this paper, we investigate a method to reduce
data redundancy and enhance construction site
monitoring with an as-built digital twin. We
propose a pipeline that combines camera
trajectory prediction and Gaussian splatting to
accurately reconstruct a construction scene from
data collected by an autonomous robot dog.
Currently, data generated by construction site
monitoring is vast and inefficient to process for
digital twin creation. Our results indicate that our
method significantly reduces the data volume
compared to traditional methods, especially across
multiple rollouts. This reduction suggests a
promising avenue in creating digital twins and for
more effective construction inspections.

2. INTRODUCTION
Digital twins of construction sites serve as an
important tool to monitor construction progress. A
digital twin in construction ideally contains all
up-to-date information of the physical site. Digital
twins ensure that all project elements remain
consistently updated with what decisions were made
on-site. This allows inspectors to easily confirm the
alignment of physical work with the design plans,
while real-time updates enhance resource allocation
and enable more frequent assessments of building
conditions. Moreover, digital twins offer the
capability to simulate environmental conditions,
leveraging weather data to refine construction
planning and identify potential errors [7]. Minimizing
these errors in turn leads to the prevention of
catastrophes and deaths related to uncaught
construction flaws. Moreover, we received vital
information on monitoring construction progress
from Adam Heisler, the FCS Group construction
manager for Cornell Ann S. Bowers College of
Computing and Information Sciences’ new building.
Heisler explained that photo documentation is
important for proving to contractors that work was

done by the correct personnel. Additionally, this
documentation is critical when making future
changes to a building, like during renovation. Heisler
expressed his desire for a tool that could easily allow
him to see previous stages of construction without
needing to tear down walls for renovations. We
believe that a digital twin would be able to
accomplish these documentation and temporal
aspects.

When autonomous robot dogs traverse construction
sites, they gather data in the form of RGB videos and
depth readings. However, this amounts to an
enormous amount of data collected, even just on a
single traversal. From our experience, capturing only
20 seconds of 1280x720 RGB-D images taken at 30
FPS amounts to about 15 GB, which scales to an
astronomical amount of data when scanning an entire
construction site. Storing this data can be costly, and
the sheer size makes it unwieldy. Additionally,
according to a study conducted by Autodesk, they
“found that 55% of U.S. organizations report that
they are creating over 50% more data than they were
just 3 years prior” which shows a need to have a
reduction in data size [12]. One method for reducing
the large file size is building off of previous scans of
construction sites, only keeping the changes since the
previous scan. For example, when building a wall in
a room, scanning the room for each stage of the
wall’s construction would include plenty of redundant
information as only the wall would change. In our
paper, we employ the SplaTAM model to convert
videos of a wall being constructed over multiple
scans into a single 3D model, significantly cutting
down the storage required to hold the scene. Saving a
construction scene as a 3D model also has the benefit
of being easier to use, which is important as
according to the same survey by Autodesk: “more
than 80% of all respondents describe at least 25% of
their project data as unusable” [12]. When asked
about the challenges of using their data, the third and
second most difficult aspects were that “data is not
easily accessible, either due to its structure or the



unwillingness of others to share” and “there is too
much data to know how to use it
efficiently/effectively” [12]. Once again, creating a
system that can transform construction site data into a
much smaller size while converting it into a more
user-friendly format would solve both of these
pressing problems.

3. GAUSSIAN SPLATTING
3.0 3D Gaussian Splatting

3D gaussian splatting is a novel method of rendering
radiance fields in real-time, focusing on creating an
unstructured representation of radiance fields using
3-dimensional gaussians that are accumulated to form
a reconstructed image [8]. Given a set of images, the
method calibrates cameras for each of them via
Structure-from-Motion, which produces a sparse
point cloud as part of the process of calibration. 3D
gaussians are then initialized based on this point
cloud. Next, properties of these gaussians are
gradually optimized, along with steps for density
control such as combining or splitting gaussians, until
a compact and unstructured representation of the
scene is reached. The final product preserves the
properties of continuous and differentiable
volumetric rendering (avoiding the discontinuities of
point sample rendering) while allowing for a fast
visibility-aware sorting algorithm of splats to ensure
high-quality real-time rendering.

3.1 Usefulness For Digital Twins

In the context of creating and maintaining a digital
twin, gaussian splatting is more promising for
accomplishing this task than traditional approaches
such as mesh-based rendering. This is because
gaussian splats are interpretable, editable,
composable, and easy to evaluate qualitatively. Splat
data is stored akin to point information, with each
gaussian listed out with properties such as position,
scale, color, orientation, etc., making it very easy to
single out a specific spot in a render. This
interpretability has the side effect of making splats
easy to edit, as specific splats can simply be removed
or updated as needed without having to focus on
interactions with neighboring gaussians. Extending
from this, the process of composing two gaussian
splat scenes is also simple since one can simply
overlap the two scenes in space, remove intersecting
gaussians, or even remove a general region of
gaussians. With it also being easy to assess the
accuracy of gaussian splats compared to a ground
truth, this method checks off many of our boxes for

constructing a digital twin that will change
dynamically over time.

3.2 Neural Radiance Fields

Neural Radiance Fields (NeRFs) are another method
of creating a continuous volumetric rendering of
radiance fields. Although NeRFs boast high-quality
representations of scenes, this comes at the cost of
extremely costly training and rendering times. On the
same scene, whereas the Mip-NeRF360 method [11]
achieved a PSNR score of 24.3 with a training time
of up to 48 hours and a rendering speed of 0.071 fps,
3D gaussian splatting achieved a PSNR score of 25.2
(slightly better than the NeRF) with a training time of
51 minutes and a rendering speed of 93 fps [8]. The
slow rendering time of NeRFs can be partly chalked
up to their lack of interpretability; frequent random
sampling is required in order to determine the colors
of pixels, inflating rendering times while still leaving
room for inaccurate computations. With gaussian
splatting having a better PSNR score with less
training and with real-time rendering capabilities, it’s
clear they will work well for our pipeline.

4. LITERATURE REVIEW: Gaussian
Splatting and SLAM
4.0 Introduction of Papers

Here we present a brief literature review of six papers
related to Gaussian Splatting and/or SLAM.

[1] SplaTAM (N. Keetha, et al.)
[2] SGS-SLAM (M. Li, S. Liu, et al.)
[3] UVOS1: Unsupervised vdeo object

segmentation for enhanced SLAM-based
localization in dynamic construction
environments (L. Yang and H. Cai)

[4] Spacetime Gaussians (Z. Li, Z. Chen, et al.)
[5] Dynamic 3D Gaussians2 (J. Luiten, et al.)
[6] Kimera (A. Rosinol, M. Abate, et al.)

Of these six papers, three [1–3] focus primarily on the
construction of static scenes by filtering out (or
assuming the absence of) dynamic objects while the
other two, [4,5], incorporate motion directly into the
final representation. Nevertheless, methods that
specifically incorporate dynamic information may
prove useful for omitting dynamic information.

1,2 The authors of this paper did not coin this
abbreviation or term for their paper; we shorthand for
sake of discussion.



To begin, we first acknowledge that SGS-SLAM [2]
(Semantic Gaussian Splatting SLAM) is the single
best performing method for gaussian-splatting/SLAM
in the discipline as of when we started our research.
SGS-SLAM is also the most recent and responds to
the other papers [1,4,5] while also establishing the
most convincing direction for future developments.
To provide context for how SLAM is currently being
used in general, since SLAM is a widespread
technology which long precedes gaussian splatting,
we also include UVOS as a comparison of how others
are approaching SLAM in ways prior to/other than
gaussian splatting on construction sites.

In our experimentation, we used SplaTAM because it
was the most compatible open-source repository. For
reasons discussed later, SplaTAM is in some ways a
good choice for our experimentation and in other
ways quite suboptimal.

We discovered that SplaTAM does not work as
expected on a sparse dataset (dataset with smaller
number of pictures). The predicted camera trajectory
isn’t accurate enough to splat the gaussians on the
right place, leading to distorted artifacts. Therefore,
without ground truth for camera pose, we decided to
use Kimera [6] to perform camera trajectory and pose
prediction. Kimera predicts camera trajectory in a
real-time manner using semantic localization and
mapping without requiring a large amount of stereo
images. It makes predictions with the help of an IMU
(Inertial Measurement Unit) that keeps track of the
camera linear acceleration and orientation.

4.1 The Representation of Gaussians

There seem to be two main approaches when it comes
to representing gaussians: anisotropic or
isotropic—meaning that the gaussians can either be
asymmetrically stretched or symmetrical in all
directions from the origin respectively. In the
anisotropic camp, we have [4,5] while [1,2] both use
isotropy as a simplifying assumption.

4.1.1 Anisotropic Gaussians
Spacetime Gaussians [4] assumes not only anisotropy
of the gaussians, but for each gaussian they also store
a feature vector which is responsible for keeping track
of both opacity and radiosity (in addition to base
color). For each of these features, they also use a
small MLP to learn view-dependencies for directed
radiosity; they compare this approach to other papers
which keep track of spherical harmonics to
accomplish a similar feat. This approach is
significantly more involved than the paper from
Dynamic 3D Gaussians [5], which simply stores the

color and transformation of each gaussian. This
development appears to be a response to the former
paper, because the authors of Spacetime Gaussians
state “their method demonstrates appealing results for
3D tracking, but its rendering quality is less favorable
due to flickering artifacts” [4].

4.1.2 Isotropic Gaussians
For isotropic gaussians, not much is to be said about
the sophistication of the choice because they are
simple. The main motivation for using an isotropic
gaussian is the speedup and simplification of the
optimization. SGS-SLAM [2] does not seem to
consider the specific downsides/upsides and instead
appeals to SplaTAM [1] for the decision to use
isotropic gaussians. SplaTAM explains the incredible
computational upsides to using isotropic gaussians
(allows similar representations to run around 10–100x
faster) and also that it helps with convergence because
the isotropy allows for dense photometric loss. As we
will also see soon, using isotropic gaussians lends
itself more naturally to dense SLAM.

4.2 Dynamic Objects

Dynamic objects pose a significant problem for
SLAM because most (if not all) SLAM approaches
make the assumption that you can figure out where
you are if you can identify some previously identified
keypoints. There are generally two kinds of SLAM,
dense and sparse. The sparse version aims to identify
a small number of easily identifiable, distinct features
to triangulate the current position, dense SLAM tries
to identify as many features as possible and then
figure out what position explains the current location
the best (maximize agreement). SplaTAM and
SGS-SLAM [1,2] both assume a static scene, which is
a significant limitation because many use cases for
mapping cannot be vacated or made still for the
mapping run.

UVOS [3] (although not a gaussian splatting method),
uses motion saliency masking along with semantic
segmentation of dynamic entities like people and
shows promising results for masking out keypoints
associated with dynamic objects. SplaTAM [1] has a
similar masking feature which could be modified to
perform the same kind of masking—for SplaTAM this
is its silhouette mask. The silhouette mask predicts
motion between frames to figure out which parts of a
scene would be previously hidden from previous
vantages to know what information to focus on.

By contrast, Spacetime Gaussians [4] and Dynamic
3D Gaussians [5] fully account for dynamic objects,
incorporating motion into the scene's representation.



Admittedly, ‘motion’ in the context of these papers is
more of the form of a spatial video rather than the
construction of a full model representation—time is
not ‘factored’ out like in the previous methods [1–3].

Dynamic 3D Gaussians [5] is one of the first (and still
SoTA) examples of gaussian splatting being used to
localize objects as they move around in a scene. They
accomplish this by requiring that gaussian splats
satisfy local rigidity constraints and keeping them
persistent between timesteps. One downside to this
approach is that there is not enough information to
guide each gaussian at every timeframe, and this leads
to the flickering artifacts.

Spacetime Gaussians, builds off this critique and
implements a continuous path for each gaussian so
that interpolation is much more smooth. Since
gaussians are also permitted to come in and out of
existence in this implementation, deformation and
changes of geometry are also easier to represent—this
is perhaps shown most clearly in the flame-throwing
example, where Spacetime [4] demonstrates how well
their approach captures flames.

4.3 Real-Time Applications

Papers [1,2,4] all present real-time applications of
gaussian splats for novel view synthesis. At present, it
appears that SGS-SLAM [2] does not publish any
information about runtime; since their paper is so new
and the code is not released, it is likely they are still in
the refactoring process and optimizing their code.
Nevertheless, they claim that their approach still
works for real-time applications. SplaTAM [1],

however, with code available, establishes the fastest
times of all the other papers, able to perform SLAM at
rates of around 15 Hz and offline create novel views
at over 400 FPS. Spacetime Gaussians [4] with its
additional overhead is able to perform novel view
synthesis at 66 FPS at an 8K resolution; it also has the
highest rendering fidelity scores of all the methods.

5. EXPERIMENTATION
5.0 SplaTAM

We use SplaTAM to track and map the path of an
ANYmal-D robot roving around the scene that it
captures. As stated before, we use gaussian splatting
as our means of rendering because it is a novel
method that is easily interpretable, editable,
composable, and is easy to evaluate qualitatively.

5.1 Simulating Construction Sites

To test our method, we modeled the process of
constructing an interior wall with pipes. Starting with
a simple room model sourced online [9], we used
Blender to model the wall construction using an
online frame library [10]. The construction process
consists of six stages: (1) inserting the top and floor
wooden plates, (2) constructing two studs on either
end of the room, (3) adding the remaining vertical
studs, (4) inserting cross studs, (5) installing pipes,
and finally, (6) putting up sheets of drywall. Then, we
added texturing and lighting in Omniverse, which
stay constant across each stage. To enhance realism,
we placed various construction-related and
non-construction objects to reflect the messiness of a
typical construction site.

Figure 1: Simulated Stages of Construction
Six stages of constructing an interior wall with pipes were rendered using Blender and Omniverse. The images
above depict each stage from left to right. Various objects were placed to mimic the typical untidiness of
construction sites.



5.2 Data Collection

To export our data from the simulated scenes, we
employed Nvidia’s Isaac Sim to simulate an
Anybotics ANYmal-D walking around the room
using the Anybotics NLP-4-Actuator policy, which is
trained for the robot. The weights that were
graciously given to us by ETH Zürich and verified on
real-life rollouts were slightly modified to have
increased velocity commands. We took 1280x720
RGBD images at 30 FPS for the last two stages of
construction in Figure 1, amounting to under a
minute of footage traversing the room. Due to time
constraints, we could not run the simulation on the
other stages, so we used the stages with the most
drastic change that would allow us to examine if our
method modifies occluded objects when
incorporating successive scans.

One challenge we initially came across in our data
collection was the highly specular nature of the
texture of the wooden floors in the construction
scenes. The specular texture introduced noise into our
results, so we removed the specular component
entirely before proceeding with data collection.
Consequently, due to the simulated nature of our data,
the images gathered in our runs generally do not
contain artifacts such as blur, overexposure,
underexposure, smudging, or other forms of noise.
While this lack of noise is unrealistic, we believe that
these conditions are sufficient for showing the data
reduction achieved by our method.

5.3 Predicting Camera Trajectory

Having accurate camera trajectory is crucial for
SplaTAM. SplaTAM does not perform as well as
expected on the camera feed from a walking robot
which is often tremulous. Inaccuracies in the camera
trajectory prediction cause scene doubling that results
in catastrophic failure. Here we present how we
envision using Kimera [6] to prepare the camera
trajectory for SplaTAM or other gaussian splatters
which could take its place.

5.3.1 Kimera
Kimera is an open-source C++ library for real-time
metric-semantic localization and mapping using
visual-inertial data. It enhances existing SLAM
systems by integrating rapid mesh reconstruction and
3D semantic labeling. Kimera is modular, comprising
a Visual-Inertial Odometry (VIO) module, a pose
graph optimizer, a 3D mesher, and a dense
metric-semantic reconstruction module.

Figure 2: Kimera camera trajectory prediction
visualization (red path).

Kimera-VIO: Visual-Inertial Odometry
This module is our current main focus. It takes stereo
image sequence and the IMU (Inertial Measurement
Unit) data as input and outputs the predicted camera
trajectory that SplaTAM needs. It contains a VIO
front-end which does Shi-Tomasi corner detection,
stereo matching, and RANSAC[15-16] geometric
verification. The pipeline then goes into the VIO
back-end that integrates the results from the front-end
and estimates the 3D positions of observed features
using Direct Linear Transform. Finally, states that fall
outside the smoothing horizon are marginalized using
GTSAM[14]. Visualization of this process is shown
in Figure 2.

Kimera-Semantics: Metric-Semantic Segmentation
This module is vital for our future work. It generates
a semantic annotated global mesh that labels the
detected objects in the reconstructed scene. Since the
focus of this project is to eliminate transient data on
construction sites, our goal is to detect the transient
data during real-time scanning and mask off the
objects.

We simulated a quadruped robot walking in the scene
that we constructed (shown in Figure 3) in ROS and
recorded the construction process in a ROS bag file.
The IMU and the camera are both recording at 60
frames per second. The RGB-D images are at
1920x1080p resolution, which is higher for more
precise feature detection. The images and data are
extracted from the ROS bag file and passed into
Kimera with proper intrinsics.



Figure 3: Simulated Quadruped Robot Recording
the Constructed Scene

5.3.2 Current Implementation (Dense Video)
Because we could not get Kimera running, in the
current implementation we rely heavily on using a
large number of photographs, potentially
supplemented by robot odometry data (our final
results are presented without g.t. odom.), to achieve
an accurate mapping. This is because SplaTAM
performs silhouette masking, which requires small
changes between images to track correctly.

Although SplaTAM requires images which are close
together to perform accurate silhouette masking, we
noticed given ground truth positions, we could reduce
the number of input images dramatically. This
suggests a future implementation where ground-truth
labels could be provided by a sparse SLAM
technique while SplaTAM computes the splatting.
Admittedly, this makes SplaTAM itself somewhat
redundant, as it means we are using the Spla– without
the –TAM. We intended to use Kimera to this effect.

To be clear, we are not concerned with the number of
images in the context of SplaTAM; this observation is
not an optimization. SplaTAM is an algorithm which
runs online, only needing one image at any given
time, even if many total images are processed. Rather,
we point out that it is possible to implement our
results with any sparse SLAM technique and a
splatter, rather than combining both (i.e., SplaTAM).

5.4 Data Efficiency

SplaTAM also seems to have regions where it is
inefficient with its placement of gaussians. As shown
in Figure 4, walls which were shear to the robot’s
camera developed uncharacteristically dense regions
of gaussians (despite being a plain white wall), we
believe this is because in the depth image there is a
large depth color gradient along surfaces which tend
to parallel with the camera rays, which encourages
the placement of many gaussians. We expect these
issues to be resolved in newer variants of SplaTAM.

Figure 4: 3D Graph of Gaussian Centers
Centers are marked in blue. An abnormally dense

region of gaussians is on the left wall.

6. RESULTS
6.1 Our Implementation

Representing a series of images as a 3D Gaussian
splatted renderings results in a significant reduction
in stored data, especially when tracked over several
runs. We found that a 2.4 gigabyte set of RGB-D
images capturing our simulated construction site can
be represented as a ~650 megabyte set of Gaussian
splats. At a different point in time, with only a few
new changes to the environment, a second scan will
effectively double RGB-D data. For gaussian splats,
however, the only added data will be splats
representing the new changes, thanks to gaussian
splatting’s property of composability. Not only is
initial data stored much less for gaussian splatting,
the rate at which new data is accumulated is also
slower. Thus, on top of reducing data required to
store a scene, data redundancy is also mitigated.

Our current implementation is naive but demonstrates
what future, more sophisticated implementation could
pull off. There are some key assumptions which we
make that future implementations would need to take
into account:

1) We assume that between rollouts, the robot
starts at exactly the same position and
orientation relative to the first scan. Future
work will need to accommodate different
starting locations and estimate the relative
offset.

2) Our implementation does not cull geometry
which is no longer present, this leads to
artefacts in the shape of old geometry with
the texture of new geometry. Generally the
effect is a “paint-over” in space. If geometry
is only being covered-up over time, our
method works.



3) People and moving/transient objects we
intended to filter out as discussed in §5.3.1
are currently incorporated as-is into the
scene. This is especially problematic while
we are not limiting what gets splatted
because of 2) above.

6.2 On Consecutive Runs, “Paint-over” Effect

We successfully implement multiple stages of
construction being composited with our method,
though observe some interesting effects caused by the
presence of geometry which does not agree with the
images being fed in.

The wall appears well-reconstructed (although we
have not collected any pixel-wise metrics to confirm
this) and has a texture consistent with the images that
were taken by the robot. When looking at the actual
structure of the gaussian splat however, it is clear that
the underlying geometry impacted the density of the
new geometry, even if the final result is hard to refute
visually. We expected the wood which covers up the
pipes and framing to have a constant density but
instead see clear rarefactions in these regions,
demonstrated by the clear blue columns in Fig. 5.4.

We also expected geometry which was removed (not
just covered up) to get removed by the splatter during
the next run. This is not the case, and instead the old
geometry gets painted over with the texture from the
new image. This is quite surprising, because
SplaTAM tries to optimize the depth image of the
splats also, which means that we would have
expected the depth color of the geometry to be
updated and the splats to get deleted or pushed back
and be repurposed into a part of the wall.

What we see instead is typified by Figure 6. The hand
truck, wet-floor sign, and crate from the previous
stage of construction have been painted over with the
wooden texture, even when the corresponding
geometry is no longer present.

(Fig. 5.1) The gaussian splat before.

(Fig. 5.2) The rendered splat of the boarded-up
wall after adding new gaussians.

(Fig. 5.3) Plot of the centers of the gaussians comprising
the wall. The two large holes near the base are result of
geometry which is out-of-plane. (c.f. Fig 6.)

(Fig. 5.4) A highlighted hyperplane placed
between the pipes and the generated wall.

Figure 5: New Splatted on Old

Figure 6: The “Paint-Over” Effect
The same scene in Fig. 3 from a different perspective to

show the geometric errors.



(Fig. 7.1) Camera trajectory drifts.

(Fig. 7.2) Large correspondence vectors

(Fig. 7.3) Correspondence failure (red circles)

(Fig. 7.3) “Features” (blue points) detected
for a blank wall due to lack of texture.

Figure 7: Kimera camera trajectory prediction

6.3 Kimera: Camera Trajectory Drifting

Kimera’s monocular pipe isn't robust enough to work on
our constructed scene. The predicted camera trajectory will
shoot out as a straight line after the first few frames (as
shown in Fig. 7.1). We faced three main problems:

1) Abrupt camera movement: the simulated
quadruped robot turns the camera too quickly so
that the detected pixel correspondences generate
vectors with huge magnitude (Fig. 7.2).

2) Across-frame correspondence failure due to overly
reflective textures: the texture for the wooden floor
is mirror-like, reflecting every object in the entire
scene. The same pixels appear different across
frames, confusing the model to find
correspondence (Fig. 7.3).

3) Inaccurate feature detection due to overly smooth
textures: there’s no significant textural variation on
the walls. So when facing the wall, the detected
features are inconsistent across frames (Fig. 7.4).

7. FUTURE WORK
We believe that gaussian splats will become a widespread
graphics technology in various fields because of their
ability to create photorealistic scenes and the many benefits
of their representation. For construction, this could be the
optimal format for a digital twin. Figure 8 demonstrates
what a more thoughtful implementation of our method
could look like. Each of the four stages of construction are
preserved as updates are made around and/or cover it up.
All of the stages are seamlessly combined and stored as a
single gaussian splat. The end result of the process is an
as-built digital twin which can be spliced later to look
behind the walls and see how it was all done—like an MRI
for a building.

By tagging each gaussian with a timestamp, we envision an
application which lets the user scroll through time to
interactively traverse the construction site both spatially and
temporally, allowing them to peel away walls to see behind
them as it was built. This has many potential benefits to
contractors who would like to see through walls before they
might have to knock them down or even as a way of
certifying proof of work.

Finally, we would like to point to Khronos, a framework for
reconstructing spatio-temporal representations for robot
environments, as a tool for our future work [13]. Khronos is
able to work in dynamic environments, which is critical for
monitoring a construction site over time. Specifically, its
ability to discern between short-term dynamics and
long-term changes can lead to more accurate
reconstructions of the scene by eliminating transient data
effectively.



Figure 8: Rendering of Scene Composition
A mock-up of what a more sophisticated method is capable of. The four images below show examples of stages of
construction, including transient data which was filtered out automatically.

8. CONCLUSIONS
We demonstrate a preliminary proof of concept that
reduces data redundancy in construction scene
reconstruction by camera trajectory prediction and
Gaussian splatting. Specifically, we showed that if
one can localize themselves within an existing
Gaussian splat, it is easy to add new geometry, such
as a wall, while preserving features inside that wall.
For a single rollout, utilizing this method results in a
72.5% data reduction rate compared to taking and
storing RGB-D images of the scene; we demonstrated
that a 2.4 GB set of RGB-D images can be condensed
into about 650 MB worth of Gaussian splats.
Importantly, we argue that our method saves data
across multiple rollouts. With just a few new changes
to the environment, a second scan effectively doubles

RGB-D data, while Gaussian splatting only adds
splats representing the new changes. There are still
drawbacks to our method as our Gaussian splatting
model cannot cull geometries correctly, leading to a
“painting-over” effect as shown in Figure 6. For
robots which jolt as they walk, changes between
frames may be too significant for SplaTAM to
account for, leading to catastrophic scene doubling.
We attempt to remedy this problem via Kimera-VIO
to predict the camera trajectory. This was not
implemented into the 3D reconstruction model within
our timeframe. While our method has limitations, it
does show promise for being able to downsize the
amount of data which is required to keep track of a
construction site and creating a digital twin, as well
as opening the door for newer technologies that
interface with gaussian splats.



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer, D. Ramanan, and J. Luiten, "SplaTAM:
Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM," arXiv, 2023.

M. Li, S. Liu, H. Zhou, G. Zhu, N. Cheng, and H. Wang, "SGS-SLAM: Semantic Gaussian Splatting For
Neural Dense SLAM," 2024. arXiv:2402.03246 [cs.CV].

L. Yang and H. Cai, "Unsupervised video object segmentation for enhanced SLAM-based localization in
dynamic construction environments," Automation in Construction, vol. 158, 2024, Art. no. 105235, ISSN
0926-5805.

Z. Li, Z. Chen, Z. Li, and Y. Xu, "Spacetime Gaussian Feature Splatting for Real-Time Dynamic View
Synthesis," 2023. arXiv:2312.16812 [cs.CV].

J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan, "Dynamic 3D Gaussians: Tracking by Persistent
Dynamic View Synthesis," in 3DV, 2024.’

Rosinol, A., Abate, M., Chang, Y., & Carlone, L. (2019, October 6). Kimera: an Open-Source Library for
Real-Time Metric-Semantic Localization and Mapping. arXiv.org. https://arxiv.org/abs/1910.02490

Zhang Jiaying, Cheng Jack C. P., Chen Weiwei, and Chen Keyu. "Digital Twins for Construction Sites:
Concepts, LoD Definition, and Applications." Journal of Management in Engineering, vol. 38, no. 2, 2022,
04021094. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000948.

Kerbl, B., Kopanas, G., Leimkühler, T., & Drettakis, G. (2023). 3D Gaussian Splatting for Real-Time
Radiance Field Rendering. ACM Transactions on Graphics, 42(4). Retrieved from
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Natcrot. 2021. WhiteRoom1[3D model]. Retrieved from
https://sketchfab.com/3d-models/white-room1-26a61fba0d5d41dcbe01478de9831218#download

BigRyan. 2017. Sweet Home 3D Online Frame Library [Online frame library]. Retrieved from
https://sourceforge.net/p/sweethome3d/d-models/421/

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., & Hedman, P. (2022). Mip-NeRF 360:
Unbounded Anti-Aliased Neural Radiance Fields. arXiv.org. https://arxiv.org/abs/2111.12077.

Harnessing The Data Advantage In Construction. Autodesk. (2022, October 18).
https://construction.autodesk.com/resources/guides/harnessing-data-advantage-in-construction/

Schmid, L., Abate, M., Chang, Y., & Carlone, L. (2024, February 21). KhRonos: A Unified Approach for
Spatio-Temporal Metric-Semantic SLAM in Dynamic Environments.
arXiv.org.https://arxiv.org/abs/2402.13817

F. Dellaert et al., “Georgia Tech Smoothing And Mapping (GTSAM),”. https://gtsam.org/

T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,”
IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based framework for local odometry
estimation with multiple sensors,” arXiv preprint: 1901.03638, 2019.

https://spla-tam.github.io/assets/SplaTAM.pdf
https://spla-tam.github.io/assets/SplaTAM.pdf
https://arxiv.org/pdf/2402.03246.pdf
https://arxiv.org/pdf/2402.03246.pdf
https://doi.org/10.1016/j.autcon.2023.105235
https://doi.org/10.1016/j.autcon.2023.105235
https://oppo-us-research.github.io/SpacetimeGaussians-website/
https://oppo-us-research.github.io/SpacetimeGaussians-website/
https://dynamic3dgaussians.github.io/
https://dynamic3dgaussians.github.io/
https://arxiv.org/abs/1910.02490
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000948
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://sketchfab.com/3d-models/white-room1-26a61fba0d5d41dcbe01478de9831218#download
https://sourceforge.net/p/sweethome3d/d-models/421/
https://arxiv.org/abs/2111.12077
https://construction.autodesk.com/resources/guides/harnessing-data-advantage-in-construction/
https://gtsam.org/

