
Let it SIMmer: Lazily-Evaluated Embeddings in
Robotic Navigation and Digital Twins

Will Huey
Cornell University

Ithaca, NY
wph52@cornell.edu

Sean Brynjólfsson
Cornell University

Ithaca, NY
smb459@cornell.edu

Abstract—A child, an architect, and a structural engineer go on
a visit to the Sagrada Famı́lia— an exotic, unfinished cathedral
in Barcelona that has been in development for over a century.

The child looks up in wonder, eyes wide and gleaming. For
the child, the cathedral is a fairy tale castle, with its many spires
like giant candy canes, its tourists whimsical inhabitants, and its
intricate facades reminiscent of an enchanted forest.

The architect looks up with a more discerning gaze, dissecting
and labeling every mix of Gothic and Art Nouveau form. To her,
the Sagrada Famı́lia is a masterclass in design. She marvels at the
geometry, the incorporation of hyperbolic paraboloids, helicoids,
and conoids—every detail full of innovation, yet deeply rooted
in history.

The structural engineer, in contrast, focuses on the pillars,
arches, and the scaffolding that support the growing basilica. He
recognizes the tree-like columns which Gaudı́ used to distribute
weight and mimick nature’s strength. He looks for flaws, he
sees the fixes, he ponders the technical difficulties behind the
magnificent structure.

And now a robot enters behind the three. What does it see?

NOTE WELL

The write-up here is foremost a summary for internal use.
We explored so many tangents that much of the information
here is irrelevant to any single focus, but for comprehension
and completeness we wanted to document it all.

I. CONCRETE

While seeing robots on a construction site might sound
futuristic, we envision them playing crucial roles in tasks such
as BIM modeling, scanning construction sites for mistakes/out-
of-tolerances, and playing a significant part in the creation
and maintenance of digital twins. However, there are still
significant challenges to face before deploying autonomous
robots in a generic environment.

We started with one fundamental challenge in mind–how
can we keep a robot safe while it navigates autonomously
through a hazardous construction site?

We decided to build on top of Isaac Sim’s Orbit framework.
Its photorealistic capabilities allow us to simulate and test our
robots in a virtual environment which closely mirrors real-
world construction sites. This technology is already in use
training robots for Amazon’s warehouses, so construction sites
are a natural extension.

In June, we discovered a paper named Wild Visual Nav-
igation had been recently published by researchers at the

Robotics Systems Lab, in which a robot learns traversability
online using only image data [3]. The previous semester, we
had started to assemble our own method for traversability
estimation, but Wild Visual Navigation seemed to have better
potential for use in construction sites. We got in touch with
the first author and set out to implement the method inside
Orbit, where we could test it on our own environments.

Along the way, we were introduced to a paper from
Facebook Research: Open Vocabulary Segmentation. Known
henceforth as OVSeg, this paper unexpectedly took our project
in an entirely new direction. OVSeg introduces semantic
segmentation with an open vocabulary (i.e., any text can be
segmented at inference time, with no extra training). Initially,
we intended to use it to identify fire extinguishers, pinpointing
specific hazards, such as cones, areas marked off with tape,
or wet concrete. We also recognized that such semantic
intelligence would enhance the accuracy and depth of digital
twin reconstructions.

drHowever, we stumbled upon an unexpected discovery.
While working with OVSeg, we serendipitously discovered
it was skilled at handling labels related to more abstract con-
cepts, such as traversability. Intrigued by this, we shifted our
focus to explore the various possibilities of these embeddings.
In this discussion, we’ll start by explaining the fundamental
technologies at the foundation of our work and then delve into
our progress in applying them.

II. THE EMERGING EMBEDDING

In machine learning, an embedding is the conversion of
categorical data, like words or items, into continuous vectors
within a multi-dimensional space where position conveys
meaning. This is the foundation of many emerging technolo-
gies in natural language and computer vision. Mapping data
into a high-dimensional space can approximate the semantic
relationships between diverse objects, facilitating systems that
can rely on structure to infer meaning. This helps models be
robust to data that they have not explicitly seen before, making
them useful in a zero-shot setting.

The idea can be taken even further, where instead of
just mapping inputs of a single format into the embedding
space, establish semantic correspondences between completely
separate modalities can be established. Recent examples of



shared embedding spaces include video-to-animation, protein-
to-molecule, and for our purposes, text to image.

Fig. 1. A slide from Jensen Huang’s keynote speech at 2023 Computex
demonstrating NVIDIA’s target to support the interoperability of different
modalities; “anything that has structure, we can learn that language”— Huang.

A unified embedding space helps models seamlessly in-
tegrate knowledge from various sources, leading to deeper
understanding and more versatile applications.

III. AN INTRODUCTION TO OPEN VOCABULARIES

Before the transformer, deep learning based classification
methods required supervised learning over vast training sets
of carefully labeled data. General datasets, such as COCO,
Ade20k, and ImageNet (and countless other domain specific
datasets) have been created for the purpose of training CNNs
and Resnets. However, these are limited by the fact that they
only work on a predetermined set of object classes. Embed-
dings have opened up a new opportunity: open vocabulary
classification. Open vocabulary means that the classes are only
known at inference time (i.e., upon query), and not at training
time.

Current methods accomplish this by training a joint em-
bedding space where both representations can coexist. For
example, a model that learns to map both visual features and
linguistic features to a common space could compare a picture
of a cat to a picture of a dog and—simultaneously—to the
text description ”fluffy”. In this space, semantically similar
image-text pairs are closer to each other, while dissimilar pairs
are farther apart. When querying with open vocabulary terms
at inference time, these models can then locate the closest
visual representation of a textual description in the shared
space, enabling classification of images based on never-before-
seen labels. This paradigm shift allows for more flexible and
adaptive computer vision systems that are not strictly bound
by the labels they were trained on.

IV. ZERO SHOT SEGMENTATION

One such example of a model that utilizes a shared image-
language space is OpenAI’s CLIP, which exhibits impressive
zero-shot and few-shot learning capabilities [6]. However it
was trained specifically for image classification. While it can

provide an embedding for an entire image, it is not able to
provide contextual information about areas within an image on
its own. For tasks that require the localization of objects (rather
than just their detection), it is necessary to have semantically
labeled segments. Where classification answers the question of
”is this an image of a cat?”, semantic segmentation answers
”where are the cats in this image.” Traditionally, semantic
segmentation has required significant resources to label masks
for large sets of images. Now, various models have been
proposed to perform open vocabulary segmentation. Recently,
OVSeg was able to match the performance of state of the art
Resnets. OVSeg uses a method called MaskFormer to gain
per-pixel visual transformer embeddings, and a CLIP adapter
that maps these embeddings to the CLIP space.

Having a performant open vocabulary model is useful in
scenarios when important features are not known in advance
and/or when the set of important features is dynamic. These
tools developed on top of such technology can then take on
new forms depending on the context at hand. This comes
with the benefit of additional interactivity; because the input
format is both human-readable and human-writable, tweaking
the model amounts to rephrasing a question.

The crux of our exploration is this: in the same way that
machine learning aims to solve code we do not know how to
write, an open vocabulary model attempts to take the place of
data we can only describe.

V. VOXEL SEMANTIC SEGMENTATION (VOXSEG)

For the purpose of robotic navigation, it is useful to have
a full 3D representation of the environment, not just seman-
tically segmented images. Using the camera’s location and
intrinsic properties at the time it took the image, the per-pixel
embeddings can be projected into a 3D setting. To visualize
these embeddings in omniverse, we chose to discretize the 3D
space into voxels (the simplest possible implementation).

We evaluated two different methods for obtaining per-pixel
image embeddings: MaskFormer [1] and OVSeg [4]. Mask-
former is faster, but is only trained on the classes in the COCO
dataset, whereas OVSeg implements a clip adapter for better
generalization. Given the camera’s intrinsics, transformation
in world space, and depth for each pixel, these embeddings
are then projected back into 3D coordinates. To provide a
structured representation of the world, we use a simple voxel
grid. If multiple embeddings from different images fall in
the same voxel, they are simply averaged. We choose to
use the mean for averaging rather than an exponential or
Bayesian average because we are primarily dealing with static
environments. There is no reason to assume that more recent
images will provide embeddings closer to ground truth, and it
is important not to ”forget” old views of a voxel when new
images are taken.

The pipeline is summarized as follows:
1) An RGB image is obtained alongside camera intrinsic

and extrinsic values.
2) CLIP embeddings are computed for each pixel in the

RGB image.



3) Depth information is reintegrated (e.g. from the original
RGB(D) or derived later by intersection with mesh
geometry) and used to project the embeddings to the
nearest voxel.

4) For each voxel, sample ONE embedding from all em-
beddings that project to that voxel, if any.

5) The average of all embeddings which that voxel has seen
is kept (all weighted equally).

OVSeg inference is quite slow, with inference on the largest
model taking around 2 seconds per image and the smaller
model taking 1.2 seconds on an Nvidia A6000. The CLIP
adapter requires running MaskFormer an additional N times
on each image to obtain foreground and background mask
proposals, and then running the CLIP model on each of
those proposals. When the CLIP adapter was removed, we
found that runtime significantly decreased to around .8 seconds
per image with the large backbone and .6 seconds with the
small backbone. Despite MaskFormer being only trained on
labels in the COCO dataset, we did not observe a significant
performance drop on most out of domain labels.

Additionally, projecting the embeddings for every pixel in
the image onto the voxel grid was quite slow. To decrease
the runtime, we decided to randomly sample an embedding
for each voxel that appears in the image. Given just one
image, this could cause loss of information. For example, if the
majority of a voxel contains a fire hydrant, but the one pixel
outside of the fire hydrant is selected, its embedding will be
much further from ”fire hydrant”. However, the entire purpose
of Voxseg is to average the embeddings over different view-
points. As the number of images with a pixel correspondence
to a certain voxel increases, the embedding within that voxel
approaches its expected embedding. In the limit of images, the
performance of the model with respect to the ground truth label
of the voxel is entirely determined by the variance within the
voxel, which is a function of its resolution. To improve model
performance, we just need to increase the resolution, which
comes at the expense of compute speed.

OVSeg and CLIP use a Vision Transformer (ViT) to obtain
embeddings. In the original Vision Transformer paper, it
was shown that the positional embeddings for nearby image
patches have a lower cosine distance. Furthermore, many
of the attention heads have a mean attention distance that
indicates global attention [2]. This means that if an image
contains a fire hydrant, the embedding for each pixel in that
image will be closer to that image’s fire hydrant embedding.
We assume that there is some ground truth fire hydrant
embedding, and that it can be obtained by averaging the
embeddings for every fire hydrant pixel, in every image, from
every possible viewpoint. Thus, it is less important to average
embeddings over pixels within an image, because this has
(to some extent) already been done by the attention layers.
Instead, by averaging just one embedding for each voxel over
many images, we hope to achieve a more accurate voxel
represenation.

The final computation issue involves storing the voxels.
Each voxel cell contains an embedding of size 768. Existing

robotic centric elevation mapping methods use an xy grid
dimension on the order of 200x200. With these dimensions,
storing an embedding in every grid cell requires 1.22 GB of
memory. In order to even be stored on an Nvidia A6000 with
48GB VRAM, the z dimension of the voxel grid must then be
less than 40. This memory requirement could be significantly
reduced by using sparse voxel methods. However, due to
constraints on time this summer, we were forced to limit the
method to smaller environments.

VI. VOXVIS

We set out to create an Omniverse extension to visualize
the embeddings. However, we were limited by compute power
and time to develop, and instead opted for an approach that
performs the compute on one machine and the Omniverse
rendering on the other, using ROS as a bridge.

1) Insufficient VRAM: Omniverse and OVSeg both have
high computational demands.

2) We anticipated that the dependencies were not going to
be easy to resolve, as Omniverse/Isaac-Sim itself has a
very particular way in which it interacts with its python
interpreter.

3) A ROS interface is particularly useful if we want to
easily read in rosbags and potentially even work with a
live robot.

4) It lets us split the computational burden between two
machines.

Fig. 2. The Voxvis Extension as it appears in Omniverse. The voxel
checkerboard is a live-preview of the domain while the user is changing their
voxel domain to help them position it in their scene. The interface is shown
with dummy classes and their sub-labels filled in. There are elements to adjust
the domain and resolution of the voxels, add classes, group sub-labels labels
to classes, and modify the class colors.

VII. OPEN VOCABULARY TRAVERSABILITY (OVT)
Lazily evaluated embeddings have another application:

robotic navigation. Modern mobile robots need to navigate
complex environments with boundless types of obstacles and



terrain. Construction sites are a prime example: the standard
materials, equipment, and hazard signs vary wildly in different
regions and countries. A robot might be interested in avoiding
different types of objects, from wet concrete to humans. Given
the lack of publicly available data of construction sites and the
costs associated with labeling datasets, it is not practical to
train a new model for every new case. With an open vocabulary
model, the robot can easily adapt to new environments (for
example, by being prompted to avoid red and white tape in
Switzerland, and yellow tape in the United States).

Fig. 3. A screenshot from Omniverse previewing a basic test construction
scene we assembled to test our segmentation and visualization methods. The
assets are meshed scans of real world objects we downloaded from SketchFab.

We have thus far discussed using nouns representing tan-
gible objects to prompt the model. While testing out various
prompts this summer, we decided to try a more abstract idea:
traversability. Using our VoxSeg extension, we walked an
Anymal C around in simulation, allowing it to take 60 pictures
of its environment from various views. Then, we entered the
classes “Traversable,” “Untraversable,” and “Obstacle.” The
results are shown in Figure 4.

Fig. 4. Visualizing the Voxel Segments. The colors correspond to the classes
as defined in the extension. Classification was performed online using the
RGB and depth images taken by the ANYmal after walking it around in
simulation.

From no more than the abstract concepts, the model was
able to correctly identify the voxels along the ground as
“traversable,” those approaching the dirt/rubble piles as “un-
traversable,” and the ones beside the heavy machinery as
“obstacle.” It appears that embeddings are rich enough to
encode information about traversability. Of course, this doesn’t
take into account the differences in what an Anymal C robot
will find traversable, versus a different type of quadruped,
human, car, or anything else. We anticipate this method failing
in areas that are robot-specific (our expectation is that it
mimics human perception of traversability, because this is, on
average, what the CLIP training set would provide). However,
this may be more of a feature than a bug. Most existing
methods for traversability analysis rely on some heuristic for
defining a traversability threshold. In elevation mapping, this is
usually the maximum stepping height. With this approach, the
only human input required is the prompts used by the model.

Figure 5 shows the results of applying OVSeg to images
of a construction site taken by an Anymal D. The algorithm
is able to identify most obstacles and extremely untraversable
areas. We are now working on empirically benchmarking OVT
against the current state of the art in traversability analysis.
Figure 6 shows the semantic traversability predictions overlaid
on top of the robot-centric elevation map generated during one
run through the site. Overall, the OVT predictions are quite
similar to the elevation map.

Aside from being an interesting demonstration of the power
of embeddings, open vocabulary traversability provides a few
major benefits over traditional methods. By definition, it
allows for more general semantic-based traversability analysis,
without the need for collecting data or retraining models.
As an entirely vision-based method, it does not rely on
expensive lidar scanners, and it can avoid the various pitfalls
that come with height mapping. Finally, it removes the need
for careful tuning of parameters by providing the robot with
a representation of the environment’s traversability that is
closely aligned with how a human would label it.

Fig. 5. Randomly selected traversability masks generated using the prompts
”something an Anymal robot could walk on” and ”other”. Images were taken
on a typical large construction site by an Anymal D, and the masks were
generated using the largest OVSeg model. The rightmost mask shows a step
being classified as traversable

Our current framework for these experiments is to integrate
semantic labels into an existing path planner on the Anymal
D robot. We are using a GPU-accelerated elevation mapping
method developed at the RSL to composite our traversability



Fig. 6. Semantic traversability predictions overlaid on top of the elevation
map of the environment. Red areas are predicted to be untraversable by OVT,
and blue areas are highly traversable. On the right is a ”step” that would
normally require some heuristic for the maximum traversable step, if using
only geometric methods.

signals over the estimated traversability from both geometry
[5]. In the future, we hope to extend our ”slow cooked”
voxel approach to run on the robot, which would allow it to
build a semantic representation of the environment instead of
immediately evaluating the embedding classifications.

VIII. WILD VISUAL NAVIGATION ORBIT (WVN)

This is our implementation of Wild Visual Navigation
(WVN) in Orbit. We have nearly replicated the WVN paper
in Orbit, addressing most aspects and working on a few
remaining elements for correctness. While the original imple-
mentation was built on top of ROS and rospy, we successfully
recreated this functionality within Orbit, along with creating
similar visualization tools and outputs. In order to facilitate
randomized experiments and planning integration, we also
developed Isaac Planner, a python package that provides en-
vironment graph generation, local planning, and path tracking
functionality for quadruped robots in Isaac Sim.

Unfortunately, we are currently facing a major bug in the
WVN learning pipeline that we have yet to narrow down.
This bug is characterized by excessive confidence during the
initial phase, but once the first traversability signal is received
(after the robot has walked enough to start learning from its
movements), everything suddenly drops to 0. Images below
show masks taken from a test run. Each image shows the
current traversability scores (left) and the confidence scores
(right) overlaid on the current view of the robot in the forest
environment.

IX. ISAAC STAGE

We have developed a Python repository named ”Isaac
Stage” with the capability to create randomized environments,
parametrized over a set of assets and a terrain function (and
some rules for more fine-grained control). One of the notable
features of this repository is its versatility, as it can be
seamlessly expanded to accommodate various types of terrain,
each with its own set of rules for spawning assets. In our
endeavor to establish a direct basis for comparison with Wild

Image 1

Image 2

Image 3

Fig. 7. The state of our incomplete implementation of Wild Visual Navigation
in Isaac Orbit. The left image represents the traversability score and the right
image is the confidence score (as defined in the WVN paper). Currently the
training phase has unresolved issues but the core framework is implemented.
These are signals are shown overlaid on top of the current view of the robot.
Image 1: At the beginning, both confidence and traversability are near zero
everywhere. Image 2: After mission nodes start to register, confidence begins
to improve (blue means higher). Image 3: Once the supervision signal from
the footpath is registered, both signals drop to zero everywhere.

Visual Navigation, a notable research paper, we opted to
emulate a forest environment. This choice was influenced by
the fact that the Wild Visual Navigation paper’s testing was
centered around pathways within a forest setting. To facilitate
this emulation, we present a sample terrain that has been
generated entirely through parametric means, devoid of any
manual intervention. It’s worth noting that the renderings we
present are developed in-house and accurately represent the
visual input received by the robotic system. This capacity for
generating parametric terrains and the fidelity of the rendered
images allow for meaningful evaluations and benchmarking
against existing approaches like Wild Visual Navigation.

X. REAL CONSTRUCTION SITE DATA

In our study, we centered on the analysis of real-world
construction site data. The site we scanned is located at
Schulstrasse 44, 8050 Zürich, Switzerland, though we have yet
to finalize an appropriate nomenclature for the building. The
data which we succeeded to record consists of approximately
30 minutes of data navigating a construction site from an Any-
mal. This data was fragmented into six distinct rosbags. The
site itself had diverse lighting conditions (internal, external,
skylit, dim hallway, etc.), several flights of stairs, different
stories (which were completely distinct from each other), some
puddles, glass, pits (though barricaded), and more.

While the Anymal was charging, we also conducted scans
using a Leica point cloud scanner. These scans were carried



Fig. 8. A procedurally generated forest environment created as-is via Isaac-
Stage. All three pictures taken of the same stage. No post-processing effects
were added; screen captures taken directly from the Omniverse viewport.

out specifically around the first floor of the construction site,
coinciding with the domain of the first rosbag.

Key to the live collection was David Hoeller; he transported
the Anymal to the site and explained the procedure for
operating and collecting data. He also piloted the Anymal
during the runs. (aside, Sean): It seems people familiar with
these robots have a sixth sense just like a farmers does with
cattle. Farmers can sense when a cow’s about to kick (from
inexplicable signals), and it seems a skilled Anymal operator
knows much the same when it comes to the robots–they are
much more hefty than one would expect.

Fig. 9. Example of data taken from the RGB front wide angle camera, taken
from the first mission. These images were taken in conditions identical to use-
case, i.e., the robot is in active motion (no time to look pretty); the images
arrive in the resolution 1080x1440 as as compressed jpg images–we are not
sure what the compression ratio is.

Fig. 10. Example depth camera data taken from the front RealSense camera,
848x480. The base format stores the image in units of millimeters, by obser-
vation, between 0.500m and 25.000m. The depth images were normalized and
passed through the turbo colormap reversed–so red represents near and blue
far. The dark purple is where the depth camera reported ’0’ due to a level of
uncertainty. Typically caused by surfaces nearly parallel to the camera, high
concavity, or being too far away.

Example of depth camera data taken from the front Re-
alSense camera, taken from the first mission. The data was
normalized and the Jet colormap was used.

XI. FUTURE PLANS

To summarize, these are our main accomplishments from
this summer:

• Converted the Wild Visual Navigation framework into
Orbit; even though learning itself does not succeed (from
failing to keep the original model in tact while converting)
the input/output channels involved are functional so it
should be a plug-in fix.

• Developed Isaac Stage, a python package that automati-
cally generates realistic environments in Isaac Sim given
a set of assets and a function which governs terrain
generation (and some rules for asset placement).

• Developed Isaac Planner, a python package that handles
mobile robot motion planning and path tracking in Isaac
Sim

• Developed VoxVis, an Isaac Sim extension whose scope
is to visualize arbitrary voxel data quickly. The current
implementation is tailored for our needs and has buttons
to provide open vocabulary semantic queries of a scene
and visualize the results.

• Adapted OVSeg and MaskFormer to run on top of an
existing mapping framework for the Anymal (Elevation
Mapping Semantic Cupy).

• Collected a dataset of about 30 minutes of odometry,
images, and point cloud information from an Anymal D
navigating a large construction site.

• Demonstrated accurate semantic traversability analysis
live on an Anymal D running at near-interactive times.

From here, we have two main goals.



1) Continue experiments with semantic traversability.
We can improve the results of our models in various
ways without sacrificing performance (such as Visual
Prompt Tuning and prompt engineering). We would also
like to directly compare our approach with existing
methods in traversability analysis, and see if we can
achieve state of the art results by fusing them together.
Given our promising initial results, we think that these
experiments could result in a new method for robot
navigation and provide insights into the structure of the
CLIP embedding space.

2) Rewrite and optimize the VoxVis extension. This
will include a refactor that uses sparse matrix methods
and CUDA kernels to operate on the voxels, rather
than our current method that stores a rectangular voxel
grid. We believe that VoxVis demonstrates the powerful
capabilities of Omniverse rendering and the potential for
AI in digital twins, and we hope that it could be used
by researchers and designers alike.

XII. ACKNOWLEDGEMENTS

We thank Dr. Don Greenberg for motivating this project, es-
tablishing the collaboration with the Robotic Systems Lab, and
providing funding for the summer. We thank David Hoeller
and Jonas Frey for introducing us to the RSL, answering our
many questions about the Anymal software stack, and guiding
our project. We thank Leul Testefaye and John Wolford for
tirelessly helping us debug the more complicated parts of
our project. We thank Dr. Marco Hutter for accepting two
undergraduates from across an ocean into his lab for the
summer, and Maria Trodella for making sure our arrival at
the lab was seamless.

REFERENCES

[1] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel
classification is not all you need for semantic segmentation, 2021.

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[3] Jonas Frey, Matias Mattamala, Nived Chebrolu, Cesar Cadena, Maurice
Fallon, and Marco Hutter. Fast traversability estimation for wild visual
navigation, 2023.

[4] Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang
Zhang, Peizhao Zhang, Peter Vajda, and Diana Marculescu. Open-
vocabulary semantic segmentation with mask-adapted clip, 2023.

[5] Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian Jenelten,
Timon Homberger, and Marco Hutter. Elevation mapping for locomotion
and navigation using gpu, 2022.

[6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin,
Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021.

APPENDIX

Fig. 11. The ROS system design for running OVT on the robot

Fig. 12. A procedurally generated forest environment rendered in Omniverse
which we used to compare the classifications shown below. We simulated the
robot walking around for a few minutes to accumulate different perspectives
on the environment.

Fig. 13. The results of segmentation on the forest scene using VoxSeg
performed on two sets of labels Left Image{tree, ground, rock} and Right
Image{traversable, untraversable, obstacle}, each colored teal, gold, and red,
respectively. Visuals created with Matplotlib.


